Tachykinin-related peptides modulate odor perception and locomotor activity in Drosophila.
نویسندگان
چکیده
The invertebrate tachykinin-related peptides (TKRPs) constitute a conserved family, structurally related to the mammalian tachykinins, including members such as substance P and neurokinins A and B. Although their expression has been documented in the brains of insects and mammals, their neural functions remain largely unknown, particularly in behavior. Here, we have studied the role of TKRPs in Drosophila. We have analyzed the olfactory perception and the locomotor activity of individuals in which TKRPs are eliminated in the nervous system specifically, by using RNAi constructs to silence gene expression. The perception of specific odorants and concentrations is modified towards a loss of sensitivity, thus resulting in a significant change of the behavioral response towards indifference. In locomotion assays, the TKRP-deficient flies show hyperactivity. We conclude that these peptides are modulators of olfactory perception and locomotion activity in agreement with their abundant expression in the olfactory lobes and central complex. In these brain centers, TKRPs seem to enhance the regulatory inhibition of the neurons in which they are expressed.
منابع مشابه
Distribution and modulatory roles of neuropeptides and neurotransmitters in the Drosophila brain
The central complex is a prominent neuropil found in the middle of the insect brain. It is considered as a higher center for motor control and information processing. Multiple neuropeptides and neurotransmitters are produced in neurons of the central complex, however, distribution patterns and functional roles of signaling substances in this brain region are poorly known. Thus, this thesis focu...
متن کاملNeuropeptides in the Drosophila central complex in modulation of locomotor behavior.
The central complex is one of the most prominent neuropils in the insect brain. It has been implicated in the control of locomotor activity and is considered as a pre-motor center. Several neuropeptides are expressed in circuits of the central complex, and thus may be modulators of locomotor behavior. Here we have investigated the roles of two different neuropeptides, Drosophila tachykinin (DTK...
متن کاملFluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns
The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-res...
متن کاملSubstance P modulates NMDA responses and causes long-term protein synthesis-dependent modulation of the lamprey locomotor network.
Tachykinin immunoreactivity is found in a ventromedial spinal plexus in the lamprey. Neurons in this plexus project bilaterally and are thus in a position to modulate locomotor networks on both sides of the spinal cord. We have examined the effects of the tachykinin substance P on NMDA-evoked locomotor activity. Brief (10 min) application of tachykinin neuropeptides results in a prolonged conce...
متن کاملTachykinin-related peptides in invertebrates: a review.
Peptides with sequence similarities to members of the tachykinin family have been identified in a number of invertebrates belonging to the mollusca, echiuridea, insecta and crustacea. These peptides have been designated tachykinin-related peptides (TRPs) and are characterized by the preserved C-terminal pentapeptide FX1GX2Ramide (X1 and X2 are variable residues). All invertebrate TRPs are myost...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular neurosciences
دوره 31 3 شماره
صفحات -
تاریخ انتشار 2006